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Abstract

Maps of functions en classical phase space to quantum operators do not preserve the
algebraic structure. After locating the algebraic reasons for it, the problem of quantisation
is redefined and the Moyal bracket is discussed for its structure preservation, This
quantisation entails the inclusion of Schwartz distributions to the space of classical
functions.

Y. Introduction

Consider the phase space Z = (q,p) of one-dimensional non-relativistic
motion. Let C(z) be the set of classical physical observables which are
infinitely differentiable functions on (z). Now C is a Lie algebra under the

Poisson bracket
af dg of o
drn = L2 Y% (1)

By a quantisation of C is meant the determination of a lincar map E:C — €
of self-adjoint operators on the Hilbert space of state vectors such that

E(/.8)r.s. = [Ef, Eg] (L2)

where the right-hand side is the commutator of Ef and Eg. This rather old
problem is sufficiently battered about by now with regard to its algebraic
structure preservation; one concludes (Arens & Babbitt, 1965) that it is
not possible to find an E such that

E{f.g) = EfEg 13
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where f.g(z) = f(z)g(2) is the pointwise product of f and g € C. Now in
retrospect we feel that trying to solve (1.3) for E must indeed be infructuous
for the followmg reason:

In apposition to classical mechanics, physical observablcs in quantum
theory, namely elements of €, are stochastic variables with probability
distribution functions which have positive dispersion in general. Suppose we
want the joint probability distribution of two stochastic variables to be
given uniquely from their marginal probability distributions alone. This
is poussible if and only if the operators corresponding to these stochastic
variables commute (von Neumann, 1955). Hence in a semi-classical
description where we try to embed these stochastic variables in a function
space of probability distributions in phase space, it is necessary that these
functions constitute a non-commutative algebra. But the point product
f.g in (1.3) is commutative and even the functions are causal functions.
Hence, it looks reasonable to postulate instead an equation such as

" E(fx g)=EFEG (1.4)

where f x g is a suitable non-commutative product of classical ‘abjects’,
whose nature we shall determine in the last section, and F and G are in
some way related to fand g respectively.

In fact it is important to note that non-commutativity is not sufficient;
in order that £ be a homomorphism the algebra should also be associative,
because the algebra on € is associative. For instance, consider the Peisson
bracket. It has been proved (Wollenberg, 1969) that it cannot be represented
by a commutator over an associative algebra on C(z). it is precisely for this
reason that there does not exist an E satisfying the equation (1.2).

Hence we propose, in this paper, to discuss quantisation of such non-
commutative associative algebras. We shall first carry out this programme
in a general set up and then deal with the Moyal algebra as a particular case,
which, in our opinion, is the only relevant one.

2. The General Case
On C define the product

Ixg={ K222 f (2 glz:) dz dz, @b

through a kernel K € C. (Here and hereafter all the integrals are from —
to +.) For C to represent a dynamical system we must require (2.1) to
fulfil the congitions that

(a) Cis closed under x;
(b} x is not commutative in general;
(c) x is associative.
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Then there exists the natural Lie bracket {/,g} =fxg—~g xfon C and
the mapping g — {f, g} is 2 derivation over C.
These requirements on the product naturally throw up sufficient con-
ditions on K'in the form of functional equations (Sriram & Shankara, 1969).
-Hence for a suitable class of kernels K e C for which the corresponding
functional equations are solvable, we have in Carepresentation of dynamics.
" Now we shall determine an algebra homomorphism E:C — C; in other
words, we shall find a mapping E such that

E{f,g} = [EF, EG]. (2.2)
_Allowing E to operate on (2.1) we have

Efx )= E [ K@z, fz)e() dnidz,

= [ EK(z1,2,2) 1 28D 21 .
Assume thai there exists a factorisation
EK(‘.’I,ZZ, Z) = EKC(ZUZZ) Z) EKB(zls Zz,z) (23)

where K,, K € C. Then the above equation gives

E(fx8)= [ EK.f@)dz, [ ERpe(z)dz.. (24)

Now define
* F=[ K2,/ G) 2, (2:3)
G = [ Ky(z1, 22, )g(z)d, (26)

as K-integral transforms of f and g respectively. Then (2.4) assumes the
form

E(fx g)= EFEG. @7

Since K, K,, K all belong to C the functions /' g, F, G, also belong to C.
Hence E is a homomorphism of C — €. Of course, such an E autematically
ensures also the Lie algebra homomorphism:

- E{f.g}=E(fxg—gxf)=|EF, EG].
However, the assumned factorisation (2.3) is not unique; indeed any

 EK, which has an inverse determines EKg and conversely. Hence the
mapping f — F is one-to-many.
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3. Homomorphic Quantisation of the Moyal Algebrat

Now for an example, we shall dea! explicitly with the quantisation of
the Moyal algebra (Jordan & Sudarshan, 1961). The Moyal bracket is

e =f@ysin(g 2 - 2 2)eta
which can further be thrown into a commutator form as
{fg}=Sxg—gxf @a.n
where
sxg=1 [ eplila-a0( -2 - @~ ) (0 - POB SGD8( s s

3.2)

This is an associative, non-commutative, non-local product.
Now many of the operator assignments are representable as

Ef = [ exp(ing + irp) Mo, 7 exp(ing — irp) £ (@) dy d d=

where § and p are position and momentum operators respectively and A
is o differentiable function satisfying some boundary conditions (Mlsra &
Shankara, 1968). Integrating the right-hand side we get

Ef= J’ f@) FNE-2)dz
=(f* FA)(?)

where F A is the Fourier transform of A and » is the convolution. When A
is a polynomial # A is a distribution. For example Weyl’s rule corresponds
to the case A = 1, so that

Eyf=(f*3)(8)=f(%) (3.3

We shall restrict to this rule in our further discussion.
Now the operator corresponding to the product function (3.2) is hence
given by

Entfx 8=} [ expll=-a0(6 - )~ G- ) (= pOl x
x f(z))g(z2)dz, dz,

’=; f exp{il(p: — P)d — (91 — 92) b +(9:P2 — 2:P))]}
x f(z,)g(z;)dz, dz,.

1 After this paper was submitted, we received a Texas University preprint by Simoni,
Sudarshan and Zaccaria in which the quantisation of non-commutative associative
algebras has been solved. They show that apart from trivial transformations, the complex
Moyal bracket (with & complex) is the only solution: the classical Poisson bracket is the
limit & — O of the Moyal bracket.
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The exponential operator in the integrand of this integral may now be
factorised using Baker-Hausdorf formula. Thus

Euirx0)=; [ explitpud—p-+ 40p1 ez,

x [ expl-i(pad — 4:5 — 1021 e(z) 2,

where
F=[expli(piq ~qip +30:p2)f(21) dz, (34
G = [exp[—ip2a— 020~ $0:P)Ne(2) ;. (3.5)

Thus the assumption (2.3) of our hypothesis is satisfied. But the factorisa-
tion employed above is not unique; an obviously different splitting is
obtained on interchanging the numbers ¢, p, and ¢, p, in the two exponen-
tials in (3.4) and (3.5).

4. Some Features of This Quantisation

Consider the product (3.2). If f and g are both functions of either only
g or only p, it is easy to demonstrate that f x g is commutative. 1t is non-
commutative only when there is a2 mix-up of ¢ and ¢ in the product. This
is already reminiscent of the quantum situation. Hence, in this quantisation,
it would be interesting to seck the classical image of the polynomial opera-
tors of quantum theory in particular. For this purpose it would be sufficient
to consider the case of the fundamental commutator with EF=§ and
EG=p which are the traditional position and momentum operators
obtained by Weyls’s rule. Thus it is required to determine f and g corre-
sponding to Fand G. From (3.4) and (3.5) we have

q=[expli2ia—aqip + 30,7 f @) dz,

p=[expl-ip20—0:p — d0:P)12(2) 2,

Soiving these equations for fand g we get
fz)= CxP(‘"%‘th) f qexp[~i(p,q - q,p))dgdp

= —iexp (—-;%Pz) 8(q) 8'(py),
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8(z2) = exp (— ;qu.) ]pexp [i(p29 —q:p)dqdp

= —jexp (— %qun) 8'(g2) 8(p2)-

Now these are Schwartz distributions aciir 5, oz ke:nel functions belonging
to C and not just ordinary functioas. Th..3 we kavs shown that if quantisa-
tion is required to be homomorph:, it will be necessary to represent
classical observables by Schwariz distributions when the corresponding
quantum observables are polynomiais ¥ £ °f s is a result which completely
corroborates the situation in Sudarsnan’s "Optical Equivalence Theorem®
(Sudaishan, 1963). But we shall elat:orate on this point elsewhere. As in
Sudashan’s theorem, at first sight, the presence of these distributions may
appear tc give rise to difficulties when their products are involved—a
situation =2iso imitating the difficulties in Hermann’s quantisation
(Hermann, i963); namely, when he identifies the classical phase space
with a suiset of the quantum phase space by his quantisation (fractional),
powers of the 8-function appear which do not fit in with the standard
Hilbert space framework. But here, however, the definition of the product
of distributions is valid since their domains are disjoint and the definition
always includes the kernels which act as test functions. Thus the results of
this section are in precise agreement with our speculations in the second
paragraph of the introductien.

Conclusion

The multiplication of the base algebra over which the Poisson bracket is
defined is non-associative, commutative and local; indeed, it cannot be
expressed as a commutator over an associative algebra. The quantum
mechanical Lie algebra on the other hand, is exactly its antithesis: namely,
its Lie bracket is a commutator over an associative, non-commutative and
non-local algebra. It is this situation which forbids any rule of quartisation
from preserving the algebraic structure. Hence, if one insists on structure
preservation, it is necessary that the base algebra of classical observables
is also associative, non-commutative and non-local. In this paper such
algebras have been quantised in general and the Moyal algebra is considered
as a particular example. The procedure demonstrates that the elements of
the algebra be Schwartz distributions acting on kernels whict e ordinary
functions, but are not ordinary functions themselves. Thus, an homo-
morphic quantisation enforces a prolongation of the ring of observables
on classical phase space to include Schwartz distributions. Hence it would
be interesting to derive the actual expressions of these classical distributions
corresponding to various density matrices th.! occus in quantum theory
and study them in the light of the Optical Equivalence inearcm,
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